Scraping the bottom of the barrel: CO₂ emissions consequences of a transition to low-quality and synthetic petroleum resources

Carnegie Mellon Climate Decision Making Center
September 26, 2005

Alexander E. Farrell
Adam R. Brandt
Energy and Resources Group, UC Berkeley
aef@berkeley.edu
abrandt@berkeley.edu

Introduction
• Many GHG emissions scenarios imply a transition to alternatives to conventional petroleum
• We studied IPCC Special Report on Emissions Scenarios (SRES)
 - SRES is well known and detailed
 - Transition to alternatives is not explicit
 - In many SRES scenarios petroleum production forecasts require development of either:
 • Low-grade petroleum resources (extra heavy oil, tar sands, oil shale)
 • Synthetic liquid fuels to replace petroleum (gas-to-liquids, coal-to-liquids)
• Question: How is this transition modeled?
 - What emissions factors are used?
 - What resource endowments are assumed?
 - What uncertainties are associated with these assumptions?
Method

- Literature review
 - Estimation of fossil hydrocarbon endowment
 - Petroleum, conventional and unconventional
 - Gas
 - Coal
 - Evaluation of production technologies
 - Unconventional petroleum
 - Gas-To-Liquids
 - Coal-To-Liquids
- Review and simulation of some SRES forecasts
 - Scenarios
 - A1F
 - A1B
 - A2
 - Models
 - IMAGE
 - MESSAGE
 - MiniCAM

Estimates of conventional EUR

- Historically many analysts have projected Estimated Ultimate Recovery for conventional oil (EUR)
- This is the amount of oil estimated to be produced over all time

Definitional problems

- Reserves or EUR?
- What is petroleum?
- Resources or capacity?
- Stability of supply?

Rogner’s estimates (1997)

- All SRES modeling teams used Rogner (1997) for resource endowment
 - Rogner is “optimistic” - broad resource definition

![Graph showing oil resource categories: Conventional oil, Unconventional oil, Additional Occurrences, USGS mean]
SRES oil production

- We can compare this to the oil consumed in 3 SRES modeling efforts

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Cumulative Oil Production (Gbbl 2000-2100)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IMAGE</td>
</tr>
<tr>
<td>A2</td>
<td>3900</td>
</tr>
<tr>
<td>A1B</td>
<td>4500</td>
</tr>
<tr>
<td>A1F</td>
<td>5200</td>
</tr>
</tbody>
</table>

Rogner’s estimates (1997)

- All SRES modeling teams used Rogner (1997) for resource endowment
 - Rogner is “optimistic” - broad resource definition
Carbon implications

- These unconventional resources are more expensive and environmentally damaging
 - Supply curve with variable cost is included in Rogner, thus in SRES
 - However, Rogner does not describe excess emissions from substitutes

<table>
<thead>
<tr>
<th>Emissions (gCeq./MJ of refined product)</th>
<th>Gasoline</th>
<th>Tar sands and extra-heavy oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low emissions</td>
<td>5.6 (21%)</td>
<td>9.3 (31%)</td>
</tr>
<tr>
<td>High emissions</td>
<td>16 (44%)</td>
<td>20 (56%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Low emissions</th>
<th>High emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upstream</td>
<td>20 (78%)</td>
<td>20 (69%)</td>
</tr>
<tr>
<td>Combustion</td>
<td>20 (69%)</td>
<td>20 (56%)</td>
</tr>
<tr>
<td>Total</td>
<td>26</td>
<td>29</td>
</tr>
</tbody>
</table>

Normalized 1 1.14 1.39
Global supply curve for liquid hydrocarbons

3 types of uncertainty

- Using this supply curve, we can study 3 types of uncertainty in SRES modeling of transition

1. Upstream emissions factors for unconventional production
 - Unaccounted for in IMAGE and MESSAGE
 - Partially represented in miniCAM

2. Varying estimates of conventional EUR
 - Not included in any SRES model
 - Possibly implicit in different scenarios

3. Failing to include synfuels
 - Not included in any SRES model
Uncertainty 1) upstream emissions factors

Upstream emissions (gC/MJ)

IMAGE consumption in 3 scenarios

Baseline IMAGE emission factors

Low emission factors

Cumulative Production (Gbbl)

Low emission factors
Uncertainty 1) upstream emissions factors

Upstream emissions (gC/MJ)

- Mean emission factors
- Low emission factors
- Baseline IMAGE emission factors

Cumulative Production (Gbbl)

- Low emission factors
- Baseline IMAGE emission factors
- High emission factors
- Mean emission factors
Uncertainty 1) upstream emissions factors

- Using mean emission factors for unconventional oil, cumulative upstream emissions could be 20-130 GtC higher extra emissions relative to the baseline IMAGE results, depending on the scenario.

Uncertainty 2) varying estimates of conv. EUR

![Diagram showing cumulative production and upstream emissions with different estimates.]
Uncertainty 2) varying estimates of conv. EUR
Cumulative upstream emissions using MESSAGE (GtC 2000-2100)

<table>
<thead>
<tr>
<th></th>
<th>A2</th>
<th>A1B</th>
<th>A1F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rogner</td>
<td>93</td>
<td>180</td>
<td>358</td>
</tr>
<tr>
<td>USGS 5% Probability</td>
<td>93</td>
<td>195</td>
<td>373</td>
</tr>
<tr>
<td>USGS 50% Probability</td>
<td>152</td>
<td>273</td>
<td>451</td>
</tr>
<tr>
<td>USGS 95% Probability</td>
<td>224</td>
<td>344</td>
<td>522</td>
</tr>
</tbody>
</table>

Uncertainty 3) Synthetic petroleum

- Assume USGS 5% likelihood EUR value
 - Close to Rogner's conventional oil resource categories I-IV, which includes EOR

- Calculate “shortfall” between IMAGE implied production schedule and a forecast production schedule based on USGS 5% (Hallock et al. 2004)

- Estimate additional GHG emissions from filling the shortfall
 - GTL
 - CTL
Uncertainty 3) Synthetic petroleum

Calculate the shortfall

Uncertainty 3) Synthetic petroleum

Estimate additional GHG emissions
Conclusions and further work

• Scenarios that include persistent shortages or persistent, exceptionally high oil prices (>\$50/bbl) seem implausible.

• The potential for additional emissions in SRES scenarios is clear.

• Additional detail should be incorporated into future emissions models to ensure proper understanding of the potential emissions from oil substitutes.

• If liquid hydrocarbon production does not follow the least cost supply curve, these effects could be observed sooner and in greater degree.

• Simple model of global supply of liquid hydrocarbons (17 regions).

 But, don’t clap yet...

Acknowledgements

• Thanks to Rich Plevin, John Hallock, Ted Parson and attendees at the 2005 North American Conference of the US Association for Energy Economics for comments on earlier versions of this paper.

• This research was made possible through support from the Climate Decision Making Center. This Center has been created through a cooperative agreement between the National Science Foundation (SES-034578) and Carnegie Mellon University.